Ultra-low-Power Networked Systems

Anantha Chandrakasan Department Head, EECS

Wireless Vision: 1990

1990 WINLAB workshop on Third Generation Wireless Information Networks

Prof. R. Brodersen, BWRC

The InfoPad Project – rewind 20 years

Parallelism = Energy Efficiency

A. Chandrakasan, S. Sheng, R. Brodersen, "Lowpower Digital CMOS Design" (April 1992)

"slower is better"

The InfoPad (Anantha Chandrakasan, Robert Brodersen, et al.) – ISSCC 1994

Research ICs: mW (1990) ⇔µW (current) ⇔nW (future)

Energy Efficiency is Still a Key Consideration

Deep Brain Stimulator

Battery lasts about **5 years** - surgery needed to replace it!

Courtesy of Tim Denison (Medtronic)

Energy Efficiency Impacts Time Between Surgery

Self-Powered Connected Personal Health

Enable a New Class of Bio-Medical Systems that Leverage the Power of Silicon and Nanotechnology

Key Enablers of Internet of Everything

- Tremendous advances in <u>commercial</u> low-power electronics – ultra-low-power sensors, radios, signal processing, energy harvesting
- Cost reduction of electronic components
- Simple interfaces easy access through smartphone apps (medical, fitness, energy, etc.)
- Standards for internet-of-things
- Compelling applications that matter to the end users – e.g., fitbit and fitness monitors

Vibration-to-Electric Energy

Self-powered Wireless Corrosion Monitoring Sensors PMPG + Power Management Module +Telos Pipeline

Piezoelectric Micro-Power Generators

Power Converter

Sang-Gook Kim (MIT)

10µW -100µW generated

Vibrations Power Distributed Sensor Devices (Battery-less Operation)

Body Heat Powered Electronics

Future ULP Electronics (e.g., body worn sensors) Can be Powered from Body Heat

Energy Combining : Solar, Thermal, Vibrations

Shared inductor minimizes board components

Multi-Input Energy Harvesting Design Summary

Technology	0.35μm CMOS
Input Voltages	20 - 150mV Thermal 0.2 - 0.75V Solar 1.5 – 5V Piezoelectric
Output Voltages	1.8V Regulated 1.8 - 3.3V Storage
Passives	1 Inductor (22μH) 5 capacitors
Thermal: Seebeck 50mV/K, Δ T=1.7K Solar: 1500lux, 15cm ²	Thermal Boost: 96րW Solar Boost: 262րW
Piezoelectric: PZT 3in ² , 1g	Piezoelectric Buck- Boost: 40μW Total Power: 398μW

[Bandyopadhyay, JSSC 2012]

A (New) energy harvesting source: inside the inner-ear

Can we tap the energy reservoir in the *endocochlear potential* to power electronics?

Endocochlear Potential circuit model

Endoelectronics chip: EP harvester architecture

The endocochlear potential (EP) was discovered 60 years ago by Georg von Békésy

In 1961, he won a Nobel Prize for his work on the ear

The EP has never before been used as an energy source for electronics

With S. Bandyopadhyay, A. Lysaght, P. Mercier, Dr. K. Stankovic

Every Picowatt Counts!

Leakage Power from Input: 20pW Leakage Power from Output: 223pW

Every Picowatt Counts!

Leakage Power from Input: 20pW

Leakage Power from Output: <1pW

Use "old" digital tricks – "reverse biasing"

Pico-Powered Transmitter!

Fine Grained Power Gating

System Measurements

Directions in Ultra-low-Power Processing for IoT Systems

- Use of hardware accelerators
- Use of non-volatile processing for variable energy
- Ultra-low-voltage operations using parallelism
- Activity driven processing
- Light-weight machine learning for data reduction

Biomedical MSP-430 Processor with Hardware Accelerators

- > 100-1000x reduction in energy by using accelerators
- \geq Operation down to 0.5V techniques can be combined
- Accelerators reduce overall energy by >10x in complete applications compared to CPU-only approach
 - EEG feature extraction for seizure detection: 10.2x savings
 - EKG analysis: **11.5x savings**

Non-Volatile Processor

Replace all flip-flops with Non-volatile D Flip-Flop (NVDFF)

FIR filter test-case:

Computing Architecture with Energy Harvesting

Ultra-Low-Power Using Parallelism

Parallel H.264

Parallel H.265 (HEVC)

Computational Photography

Application Specific Processor for Computational Photography

- Bilateral filtering using a 3D data structure called the Bilateral Grid
- Parallel processing for high throughput at low frequencies

Computational Photography

Processor	Technology (nm)	Frequency (MHz)	Power (mW)	Runtime* (s)	Energy* (mJ)
Intel Atom [24]	32	1800	870	4.96	4315
Qualcomm Snapdragon [25]	28	1500	760	5.19	3944
Samsung Exynos [26]	32	1700	1180	4.05	4779
TI OMAP [27]	45	1000	770	6.47	4981
This Work	40	98	17.8	0.771	13.7

Rithe, R., P. Raina, N. Ickes, S. V. Tenneti, A. P. Chandrakasan, "Reconfigurable Processor for Energy-Efficient Computational Photography," IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2908-2919, Nov. 2013.

Exploiting Signal Statistics

Correlation of Pixel Data

1.

Variation from a 16x16 Block average

2. <u># of Read Accesses > # of Write Accesses</u>

- Write once and read multiple times
 - Data reuse between consecutive blocks

Reduce energy/access in read accesses by utilizing correlation of pixel data

[Mahmut Sinangil, ISSCC 2013]

Digital Energy Metering

Energy Monitoring Circuit Operation:

- An off-chip storage capacitor (C_{sto}) is used to power up the circuit during energy monitoring
- If the voltage over C_{sto} drops by ΔV from V₁ to V₂ in N cycles, energy per operation (EOP) can be approximated as: c_{sto}× V₁× ΔV / N

•measurement result: 2x change in energy per operation is observed due to transient effects

Energy Monitoring Circuit (1/3)

• implemented and demonstrated with integrated power management circuits

 STEP 1 – Normal Operation: Buck Converter powers up the system

Energy Monitoring Circuit (2/3)

STEP 2 - Discharge: Cf is discharged from V1 to (V1 – Δ V) by I_{LOAD} in N cycles

Energy Monitoring Circuit (3/3)

STEP 3 – Recovery: Voltage is restored to initial VDD.

Energy per operation is measured as CF x V1 x Δ V / N

Sensor with Power Management Demonstrated

The operation of the system when performing energy monitoring and voltage changes

Self-Aware Test chip

- J. E. Miller, H. C. Hoffmann, S. Devadas, and A. P. Chandrakasan,
- "A Self-Aware Processor SoC using Energy Monitors Integrated into Power

Converters for Self-Adaptation," in Proc. Symposium on VLSI Circuits (VLSI), 2014.

Matrix Transpose 32

32

32x32

Light-weight Machine Learning in Hardware

On-scalp Field Potentials (EEG):

8 Channel	8 Channel Feature Extraction Engine	Classification Engine
		Registers & Debug I/F
	64 KB Data	Memory
AFE Test Block		

Process	TSMC 0.18 mm 1P6M CMOS
Area	5.0 x 5.0 mm
Supply	1.8V (AFE)
Voltage	1.0V (DBE, ADC)
Channel	1 to 8
	Scalable
Input Dyn.	30-59 dB
Range	(4 step)
AFE Power	66mW
Bandwidth	30Hz / 100Hz
	Fully Differential
ADC	SAR ADC
	10b, 4-32KS/s
Classifier	Support Vector
Туре	Machine
Latency	< 2s
Accuracy	84.4%
Efficiency	2.03mJ
	/Classification

Epileptic Seizure Onset Detection

[Jerald Yoo, ISSCC 2012]

Security for IoT

IoT introduces many unique security challenges:

- Widely deployed sensors collecting private and sensitive data
- All interconnected and potentially accessible to attackers

Example attack scenarios:

 Pacemakers can be hacked to cause unwanted stimulation

- Activity tracker logs can help an attacker profile users
- Home automation devices can be compromised to give attackers access

Opportunities

- Implement new crypto primitives like FHE to enable secure systems
- System solutions to provide complete security for IoT applications

A Voltage and Resolution Scalable SAR ADC

- Energy-efficient 5b to 10b resolution scalable DAC
- Voltage scalable from 0.4V (5kS/s) to 1V (2MS/s)
- Leakage power-gating important at low voltage/sample rates

[M. Yip, ISSCC 2011]

Data Dependent SAR

a = <code>/range

Data Dependent SAR

- Conventional SA always uses the same initial guess
- Alter the algorithm to exploit low signal activity
 - Start search at previous sample.
 - Use fewer bitcycles when initial guess is close to final output code.

Measurement Results

0.18µm General Purpose CMOS

ADC response to ECG test input signal at VDD=0.5V and f_s=1 kHz

Yaul, F. M., A. P. Chandrakasan, "A 10b 0.6nW SAR ADC with Data-Dependent Energy Savings Using LSB-First Successive Approximation," IEEE International Solid State Circuits Conference (ISSCC), Feb 2014.

Multi-Channel FBAR Transmitter

- Oscillator consumes 150µW from 0.7V supply
- Fast startup-time minimizes energy overhead
 - [A. Paidimarri, VLSI Symp. '12]

Transmitter Testchip

Technology	65nm CMOS		
Supply	0.7V (RF), 1V (Switch)		
Num. Chan.	3		
Startup Time	4µs		
Data Rate	1Mb/s		
Phase Noise	−132dBc/Hz (at 1MHz)		
P _{OUT}	−17.0dBm to −2.5dBm		
Energy per bit and Average P _{OUT}			
OOK (Gauss)	440pJ/b at −12.5dBm		
BPSK (SRRC)	530pJ/b at −11.0dBm		
GMSK	550pJ/b at −10.0dBm		

e-Textiles with Wireless Power/ Data Transfer

Network of diverse, remotely-powered sensors wirelessly linked to eTextiles

Nachiket Desai, ISSCC 2013

Putting it Together: Fully-Implantable Cochlear Implant

Conventional CI

Limitations

- Usage in shower/water sports
- Aesthetics and social stigma

M. Yip, R.Jin, H. Nakajima, K. Stankovic, and A. P. Chandrakasan, "A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Energy-Efficient Stimulation in 0.18µm HVCMOS", ISSCC 2014

Fully-Implantable Solution

Prototype Implementation

Efficient Portable-to-Portable Wireless Charging

Wirelessly charge low-power portables by high-power portables

Charge in 2 minutes for typical day use

Summary

Energy efficiency achieved through :

- > Ultra-low-voltage operation
- Hardwired architectures
- Exploiting application attributes (e.g., datadriven processing)
- Digital control of energy processing
- > Optimizing for short duty cycles
- Next generation sub-Hz optimized electronics will enable new energy harvesting applications

Exciting Opportunities Beyond Moore's Law Scaling